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Abstract

Foundation models (FMs) are reshaping machine learn-
ing and, by extension, computational cardiology. By
exploiting large, heterogeneous, and possibly unlabeled
datasets through self-supervised learning, these models
scale to large model parameter counts and provide highly
expressive feature extraction capabilities. Such pretrained
feature extractors are particularly promising for down-
stream applications in low-data settings, including rare
disease detection.

In this work, we demonstrate the use of a vision
transformer-based FM for clinical 12-lead electrocardio-
grams (ECGs) as a prescreening tool for Chagas disease,
in the context of the “Detection of Chagas Disease from the
ECG: The George B. Moody PhysioNet Challenge 2025”
(team Biomed-Cardio). Our approach reaches a score of
0.323 for the challenge metric on the hidden test set, plac-
ing first out of 41 teams.

These results highlight the value of extensive pretrain-
ing for learning robust ECG representations, and their ef-
fectiveness in downstream Chagas detection. At the same
time, this work underscores the challenges of applying
FMs to unseen datasets, where distribution shifts and other
pitfalls must be carefully addressed.

1. Introduction

Foundation models (FMs) are increasingly applied
in computational cardiology to address complex down-
stream tasks such as electrocardiogram (ECG) classifi-
cation [1]. These models are typically pretrained using
self-supervised learning, exploiting large, heterogeneous
datasets that may be unlabeled or labeled for unrelated
tasks. During pretraining, the goal is to learn robust,
general-purpose feature representations. Only in the sub-
sequent fine-tuning stage are task-specific labels required.

Computing in Cardiology 2025; Vol 52

This partial decoupling of task-agnostic feature learning
and task-specific learning enables the training of larger and
more expressive models than would be feasible with super-
vised learning alone, where limited labeled data constrain
model complexity.

Chagas disease, a parasitic condition endemic to Latin
America, is associated with electrophysiological abnor-
malities [2]. Whereas serological testing remains the gold
standard for diagnosis, ECGs can be used for non-invasive
population screening, in order to optimize the allocation of
limited testing capacity. Motivated by the robust and trans-
ferable feature representations learned by ECG FMs, we
investigate the use of a vision transformer (ViT)-based FM
[3]], integrating feature representations from all intermedi-
ate encoder layers, to detect Chagas disease from clinical
12-lead ECGs in the 2025 George B. Moody PhysioNet
Challenge [4-6].

2. Methods

2.1. FM terminology

The term “foundation model” has been used with vary-
ing definitions [1]]. In this work, we adopt two criteria:
(1) pretraining with self-supervised learning, and (2) ex-
tensive pretraining on a dataset larger than those used in
downstream applications. Our FM meets both criteria: it
was pretrained using generative self-supervised learning,
and the pretraining dataset contained 400 365 samples, in-
deed exceeding the downstream training set of 369 267
samples in size, although only by a limited margin.

2.2. FM pretraining

We used a one-dimensional (ViT)-based FM composed
of an encoder with 12 transformer blocks and a decoder
with 4 blocks. It processes 12-lead ECGs of length 1 000
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Figure 1. Architecture of the classification model, in-
cluding the foundation model (FM) encoder, demographic
(dem.) encoder, and classification (class.) head, depicted
in blue (number of model parameters in the bottom left
corner). Architectural details (output dimension for lin-
ear layers and dropout probability for dropout layers) are
added between brackets. Inputs and outputs of each part
are depicted in green (size in the bottom right corner). X
and X’ denote the original and modified feature vector, re-
spectively.

samples and sampling frequency 100 Hz, using a patch size
of 50 samples. The encoder outputs a 768-dimensional
feature vector, which is subsequently fed into the decoder.
Pretraining followed the spatio-temporal masked ECG
modeling (ST-MEM) framework [7]], in which 75% of the
input patches were randomly masked. The FM was trained
to reconstruct the masked patches using a mean squared
error loss. For further details on the FM architecture, and
pretraining datasets and procedure, we refer to [3].

2.3. FM fine-tuning

The final classification model used the FM encoder as a
feature extractor. Using the post-pretraining pooling-based
aggregation (PPA) scheme [3]], intermediate feature vec-
tors were extracted from all 12 encoder layers and aggre-
gated via average pooling to produce a 768-dimensional
feature representation. This vector was then shifted and
scaled by the output of a demographic encoder, a multi-
layer perceptron (MLP) that receives sex (binary encod-
ing) and age (in centuries) as input. An MLP with hidden
dimension of 512 was used as a classification head. The
architectures are illustrated in Figure[I]

Model fine-tuning for the Chagas detection task was
performed using the public training datasets provided by
the challenge: PTB-XL [{8], CODE-15% [9], and SaMi-

Augm. Property Sampling interval Unit
Powerline f [50£0.2]U[60+0.2] Hz
inter- 0] [0, 27] rad
ference SNR [15, 30] dB
Cropping Iy [5.65,10] S
Shifting Ly [0 £ min(1, (10 — L,))] s

Table 1. Implementation details of augmentation (augm.)
techniques. f, ¢ and SNR refer to frequency, phase and
signal-to-noise ratio of the powerline interference, respec-
tively. L; depicts the remaining signal length after crop-
ping, and L2 depicts the shifting length along the time axis.
Variables are drawn from the indicated intervals using uni-
form sampling.

Trop [10]. ECG lengths vary between 5 and 11 seconds,
and all ECGs, with original sampling frequencies of 400
or 500 Hz, were resampled to 100 Hz. Label certainty dif-
fers across datasets: negative PTB-XL labels and positive
SaMi-Trop labels are considered highly reliable, reflect-
ing the disease localization and serological testing, respec-
tively, whereas mixed CODE-15% labels are self-reported
and thus less reliable. To account for this uncertainty, we
introduced soft labels for CODE-15%, setting positive la-
bels to 0.8 and negative labels to 0.2, while retaining strong
labels (0 and 1) for PTB-XL and SaMi-Trop.

We used a weighted binary cross-entropy loss function
for fine-tuning, assigning a weight of 5 to positive cases
to address class imbalance. Additionally, we implemented
weighted sampling, oversampling positive Chagas samples
by a factor of 5. The fine-tuning phase started with frozen-
backbone training, in which only the classification head
was trained for 2 000 iterations, using a learning rate of
2 x 10~* and batch size 64. Next, all model weights were
unfrozen, and the full model was fine-tuned for 12 000 iter-
ations with a learning rate of 2 x 1075 and the same batch
size.

2.4. Data augmentation

A key difficulty in this challenge is the final out-
of-distribution evaluation on hidden validation and test
datasets with unknown origin. Subtle dataset-specific cues,
particularly the frequency of powerline interference, might
be beneficial for performance in the training dataset, but
possibly lose all value for detection in new datasets.

To build in robustness against this potentially unreliable
confounder, we implemented a powerline interference aug-
mentation strategy during fine-tuning. More specifically,
we randomly added synthetic powerline noise around ei-
ther 50 or 60 Hz to training samples. The augmentation
included variable frequency, phase and signal-to-noise ra-
tios (SNRs) to mimic realistic powerline interference of
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Training | Validation | Test | Ranking
0.490 £ 0.008 0.445 | 0.323 1/41

Table 2. Challenge scores for our selected entry (team
Biomed-Cardio), including the ranking of our team on the
hidden test set. We used 5-fold cross validation on the pub-
lic training set, repeated scoring on the hidden validation
set, and one-time scoring on the hidden test set.

moderate amplitude (see Table [I] for implementation de-
tails). The second and third harmonics of this powerline
noise were also added, with a random phase and a SNR
that is equal to half and one third of the main SNR, respec-
tively. The augmentation was applied with a probability of
0.5, and identical noise was added across all 12 ECG leads.

Random cropping and temporal shifting of the ECG
were implemented as additional augmentation strategies.
Positive and negative temporal shifting are equivalent to
adding zero padding prior to or after the signal, respec-
tively. Implementation details are provided in Table
This augmentation was applied to all training samples dur-
ing fine-tuning, identically across all 12 ECG leads to pre-
serve physiological consistency. After cropping and shift-
ing, all signals were zero-padded to reach a length of ex-
actly 10 seconds.

2.5. Model selection and evaluation

Our algorithm was evaluated through five-fold cross-
validation on the challenge training set, with mean and
standard deviation of the challenge metric, top5%-true
positive rate (topS%-TPR), the area under the precision-
recall curve (AUPRC), the area under the receiver op-
erating characteristic curve (AUROC) and the F1 score
reported across folds. For out-of-distribution evaluation
on the hidden evaluation and test sets, we randomly di-
vided the public training set into an internal training (80%)
and holdout (20%) subset. The internal holdout subset
was used for model selection, choosing the model with
the highest top5%-TPR. The prevalence of Chagas in the
top5% ranked by our model is calculated as top5%-TPR x
p/0.05, where p is the endemic Chagas prevalence (as-
sumed 0.02).

3. Results

Our ECG FM achieves an out-of-distribution valida-
tion and test set top5%-TPR of 0.445 and 0.323, respec-
tively, obtaining a first place out of 41 in the official chal-
lenge ranking. The prevalence of Chagas in the top5%
of the hidden validation and test sets, provided by our
algorithm, is 0.178 and 0.129, respectively. The train-
ing set topS%-TPR obtained via cross validation equals
0.49040.008 (0.381 40.003 for frozen-backbone training

only), AUPRC 0.252+0.008, AUROC 0.867 4 0.001, and
F1 score 0.116 &£ 0.002. The most important results are
summarized in Table 2}

Between an initial submission, which already included
cropping and shifting augmentations but none of the other
described tweaks, and our final model, we increased our
challenge score on the hidden validation set by 5% (from
0.395 to 0.445). In terms of performance within the public
training set, the difference between this initial and final
submission was notably less pronounced (only 2.7%).

4. Discussion and Conclusions

4.1.  Utility of the ECG FM

Applying our Chagas detection model to the hidden test
set for prescreening, and selecting the identified top5% for
further testing, the proportion of infected individuals re-
ceiving serological tests would amount to 32.3%, repre-
senting more than a six-fold improvement over the random
baseline level of 5%. The obtained Chagas prevalence of
0.129 in the top5% of the hidden test set means that the
expected number of individuals that need to be tested sero-
logically, in order to detect one Chagas-infected individ-
ual, is decreased from 50 (with baseline prevalence 0.02)
to 8, when using our prescreening tool. Put differently, the
fraction of serological tests spent on uninfected individu-
als, rather than serving the identification of infected indi-
viduals, would decrease from 98% under random selection
(with endemic prevalence 0.02) to 87.1%, when guided by
our algorithm, markedly improving the efficiency of lim-
ited testing resource usage.

The performance that was obtained when training solely
the classification head, and keeping the FM backbone
weights frozen, illustrate the strong feature extraction ca-
pabilities of the FM. Although the masked modeling pre-
text task is unrelated to the Chagas detection task, the FM’s
feature representations after pretraining already proved
particularly useful as-is for this downstream task. Never-
theless, end-to-end fine-tuning of the model still increased
the topS%-TPR by approximately 11% in the training set.

4.2. Limitations of the ECG FM

The overlap between pretraining and fine-tuning data is
substantial, as both CODE-15% and PTB-XL appear in
both stages. Further expansion and diversification of the
pretraining dataset would likely strengthen its foundation
character in two ways. First, a larger dataset would enable
scaling up the encoder, facilitating the discovery of more
subtle and complex ECG representations. Second, more
diverse input data would potentially improve generalizabil-
ity, making the model applicable across a wider range of
downstream tasks, demographic groups, and diseases.
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More advanced aggregation methods than average pool-
ing could be used for feature aggregation from all 12 FM
encoder layers. Gating-based mixture-of-layers aggrega-
tion schemes, proposed in [3|], are promising alternatives
to the PPL scheme used in this work, potentially allowing
even more optimized feature representations.

4.3. Mindful FM application

There is a notable difference in the effect of certain
tweaks within the training set, compared to the hidden val-
idation set. This could possibly be explained by hidden
confounders, and in particular a difference in the extent to
which they are present in the challenge’s training and vali-
dation set.

In this context, the challenge illustrates one of the key
pitfalls when applying expressive deep learning models,
caused by their black-box nature. Their high flexibility
not only enables strong performance, but also increases
the risk of potentially unknowingly relying on such hid-
den confounders, which becomes particularly problematic
when evaluating in out-of-distribution settings.

In the challenge, for instance, spurious cues such
as the original sampling frequency or the presence and
type of powerline interference could artificially boost in-
distribution performance but fail under external evaluation.
Addressing such vulnerabilities requires careful consider-
ation of such confounders and implementation of mitigat-
ing techniques, which can be as simple as resampling and
powerline noise augmentations. In future work, explain-
ability techniques could be used to reveal additional hidden
confounders that may underlie the persistent gap between
in-distribution and out-of-distribution performance.

4.4. Conclusions

We demonstrate the use of a ViT-based ECG FM, pre-
trained with an ST-MEM objective, for Chagas detection.
Our approach integrates a demographic encoder to adapt
FM features with age and sex information. To address class
imbalance and label uncertainty, we combined weighted
oversampling, a weighted binary cross-entropy loss, and
soft labeling. Robustness was further enhanced through
data augmentation strategies, including powerline interfer-
ence, cropping and shifting.

Our algorithm achieved a 0.323 top5%-TPR, rank-
ing first in the George B. Moody Challenge of 2025,
demonstrating the potential of a ViT-based ECG FM as
non-invasive and scalable Chagas prescreening tool in
resource-limited endemic regions. Beyond this specific
task, our findings highlight the broader promise of FMs
for computational cardiology, while also underscoring the
need for careful fine-tuning and confounder control in real-
world applications.
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